\(\int (c+d x+e x^2+f x^3) \sqrt {a+b x^4} \, dx\) [499]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [C] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 331 \[ \int \left (c+d x+e x^2+f x^3\right ) \sqrt {a+b x^4} \, dx=\frac {1}{4} d x^2 \sqrt {a+b x^4}+\frac {2 a e x \sqrt {a+b x^4}}{5 \sqrt {b} \left (\sqrt {a}+\sqrt {b} x^2\right )}+\frac {1}{15} x \left (5 c+3 e x^2\right ) \sqrt {a+b x^4}+\frac {f \left (a+b x^4\right )^{3/2}}{6 b}+\frac {a d \text {arctanh}\left (\frac {\sqrt {b} x^2}{\sqrt {a+b x^4}}\right )}{4 \sqrt {b}}-\frac {2 a^{5/4} e \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 b^{3/4} \sqrt {a+b x^4}}+\frac {a^{3/4} \left (5 \sqrt {b} c+3 \sqrt {a} e\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{15 b^{3/4} \sqrt {a+b x^4}} \]

[Out]

1/6*f*(b*x^4+a)^(3/2)/b+1/4*a*d*arctanh(x^2*b^(1/2)/(b*x^4+a)^(1/2))/b^(1/2)+1/4*d*x^2*(b*x^4+a)^(1/2)+1/15*x*
(3*e*x^2+5*c)*(b*x^4+a)^(1/2)+2/5*a*e*x*(b*x^4+a)^(1/2)/b^(1/2)/(a^(1/2)+x^2*b^(1/2))-2/5*a^(5/4)*e*(cos(2*arc
tan(b^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x/a^(1/4)))*EllipticE(sin(2*arctan(b^(1/4)*x/a^(1/4))),1
/2*2^(1/2))*(a^(1/2)+x^2*b^(1/2))*((b*x^4+a)/(a^(1/2)+x^2*b^(1/2))^2)^(1/2)/b^(3/4)/(b*x^4+a)^(1/2)+1/15*a^(3/
4)*(cos(2*arctan(b^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arctan(b^(1/4)*
x/a^(1/4))),1/2*2^(1/2))*(3*e*a^(1/2)+5*c*b^(1/2))*(a^(1/2)+x^2*b^(1/2))*((b*x^4+a)/(a^(1/2)+x^2*b^(1/2))^2)^(
1/2)/b^(3/4)/(b*x^4+a)^(1/2)

Rubi [A] (verified)

Time = 0.13 (sec) , antiderivative size = 331, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.370, Rules used = {1899, 1191, 1212, 226, 1210, 1262, 655, 201, 223, 212} \[ \int \left (c+d x+e x^2+f x^3\right ) \sqrt {a+b x^4} \, dx=\frac {a^{3/4} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \left (3 \sqrt {a} e+5 \sqrt {b} c\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{15 b^{3/4} \sqrt {a+b x^4}}-\frac {2 a^{5/4} e \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 b^{3/4} \sqrt {a+b x^4}}+\frac {a d \text {arctanh}\left (\frac {\sqrt {b} x^2}{\sqrt {a+b x^4}}\right )}{4 \sqrt {b}}+\frac {1}{15} x \sqrt {a+b x^4} \left (5 c+3 e x^2\right )+\frac {1}{4} d x^2 \sqrt {a+b x^4}+\frac {2 a e x \sqrt {a+b x^4}}{5 \sqrt {b} \left (\sqrt {a}+\sqrt {b} x^2\right )}+\frac {f \left (a+b x^4\right )^{3/2}}{6 b} \]

[In]

Int[(c + d*x + e*x^2 + f*x^3)*Sqrt[a + b*x^4],x]

[Out]

(d*x^2*Sqrt[a + b*x^4])/4 + (2*a*e*x*Sqrt[a + b*x^4])/(5*Sqrt[b]*(Sqrt[a] + Sqrt[b]*x^2)) + (x*(5*c + 3*e*x^2)
*Sqrt[a + b*x^4])/15 + (f*(a + b*x^4)^(3/2))/(6*b) + (a*d*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]])/(4*Sqrt[b])
- (2*a^(5/4)*e*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)
*x)/a^(1/4)], 1/2])/(5*b^(3/4)*Sqrt[a + b*x^4]) + (a^(3/4)*(5*Sqrt[b]*c + 3*Sqrt[a]*e)*(Sqrt[a] + Sqrt[b]*x^2)
*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(15*b^(3/4)*Sqrt[a
 + b*x^4])

Rule 201

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^p/(n*p + 1)), x] + Dist[a*n*(p/(n*p + 1)),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 655

Int[((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[e*((a + c*x^2)^(p + 1)/(2*c*(p + 1))),
x] + Dist[d, Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, p}, x] && NeQ[p, -1]

Rule 1191

Int[((d_) + (e_.)*(x_)^2)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[x*(d*(4*p + 3) + e*(4*p + 1)*x^2)*((a
+ c*x^4)^p/((4*p + 1)*(4*p + 3))), x] + Dist[2*(p/((4*p + 1)*(4*p + 3))), Int[Simp[2*a*d*(4*p + 3) + (2*a*e*(4
*p + 1))*x^2, x]*(a + c*x^4)^(p - 1), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] &
& FractionQ[p] && IntegerQ[2*p]

Rule 1210

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
 c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rule 1212

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(e + d*q)/q, Int
[1/Sqrt[a + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a
, c, d, e}, x] && PosQ[c/a]

Rule 1262

Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(d + e*x)^q
*(a + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, c, d, e, p, q}, x]

Rule 1899

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], j, k}, Int[Sum[x^j*Sum[Coeff[P
q, x, j + k*(n/2)]*x^(k*(n/2)), {k, 0, 2*((q - j)/n) + 1}]*(a + b*x^n)^p, {j, 0, n/2 - 1}], x]] /; FreeQ[{a, b
, p}, x] && PolyQ[Pq, x] && IGtQ[n/2, 0] &&  !PolyQ[Pq, x^(n/2)]

Rubi steps \begin{align*} \text {integral}& = \int \left (\left (c+e x^2\right ) \sqrt {a+b x^4}+x \left (d+f x^2\right ) \sqrt {a+b x^4}\right ) \, dx \\ & = \int \left (c+e x^2\right ) \sqrt {a+b x^4} \, dx+\int x \left (d+f x^2\right ) \sqrt {a+b x^4} \, dx \\ & = \frac {1}{15} x \left (5 c+3 e x^2\right ) \sqrt {a+b x^4}+\frac {1}{15} \int \frac {10 a c+6 a e x^2}{\sqrt {a+b x^4}} \, dx+\frac {1}{2} \text {Subst}\left (\int (d+f x) \sqrt {a+b x^2} \, dx,x,x^2\right ) \\ & = \frac {1}{15} x \left (5 c+3 e x^2\right ) \sqrt {a+b x^4}+\frac {f \left (a+b x^4\right )^{3/2}}{6 b}+\frac {1}{2} d \text {Subst}\left (\int \sqrt {a+b x^2} \, dx,x,x^2\right )-\frac {\left (2 a^{3/2} e\right ) \int \frac {1-\frac {\sqrt {b} x^2}{\sqrt {a}}}{\sqrt {a+b x^4}} \, dx}{5 \sqrt {b}}+\frac {1}{15} \left (2 a \left (5 c+\frac {3 \sqrt {a} e}{\sqrt {b}}\right )\right ) \int \frac {1}{\sqrt {a+b x^4}} \, dx \\ & = \frac {1}{4} d x^2 \sqrt {a+b x^4}+\frac {2 a e x \sqrt {a+b x^4}}{5 \sqrt {b} \left (\sqrt {a}+\sqrt {b} x^2\right )}+\frac {1}{15} x \left (5 c+3 e x^2\right ) \sqrt {a+b x^4}+\frac {f \left (a+b x^4\right )^{3/2}}{6 b}-\frac {2 a^{5/4} e \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 b^{3/4} \sqrt {a+b x^4}}+\frac {a^{3/4} \left (5 \sqrt {b} c+3 \sqrt {a} e\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{15 b^{3/4} \sqrt {a+b x^4}}+\frac {1}{4} (a d) \text {Subst}\left (\int \frac {1}{\sqrt {a+b x^2}} \, dx,x,x^2\right ) \\ & = \frac {1}{4} d x^2 \sqrt {a+b x^4}+\frac {2 a e x \sqrt {a+b x^4}}{5 \sqrt {b} \left (\sqrt {a}+\sqrt {b} x^2\right )}+\frac {1}{15} x \left (5 c+3 e x^2\right ) \sqrt {a+b x^4}+\frac {f \left (a+b x^4\right )^{3/2}}{6 b}-\frac {2 a^{5/4} e \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 b^{3/4} \sqrt {a+b x^4}}+\frac {a^{3/4} \left (5 \sqrt {b} c+3 \sqrt {a} e\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{15 b^{3/4} \sqrt {a+b x^4}}+\frac {1}{4} (a d) \text {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {x^2}{\sqrt {a+b x^4}}\right ) \\ & = \frac {1}{4} d x^2 \sqrt {a+b x^4}+\frac {2 a e x \sqrt {a+b x^4}}{5 \sqrt {b} \left (\sqrt {a}+\sqrt {b} x^2\right )}+\frac {1}{15} x \left (5 c+3 e x^2\right ) \sqrt {a+b x^4}+\frac {f \left (a+b x^4\right )^{3/2}}{6 b}+\frac {a d \tanh ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a+b x^4}}\right )}{4 \sqrt {b}}-\frac {2 a^{5/4} e \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 b^{3/4} \sqrt {a+b x^4}}+\frac {a^{3/4} \left (5 \sqrt {b} c+3 \sqrt {a} e\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{15 b^{3/4} \sqrt {a+b x^4}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.13 (sec) , antiderivative size = 171, normalized size of antiderivative = 0.52 \[ \int \left (c+d x+e x^2+f x^3\right ) \sqrt {a+b x^4} \, dx=\frac {\sqrt {a+b x^4} \left (2 a f \sqrt {1+\frac {b x^4}{a}}+3 b d x^2 \sqrt {1+\frac {b x^4}{a}}+2 b f x^4 \sqrt {1+\frac {b x^4}{a}}+3 \sqrt {a} \sqrt {b} d \text {arcsinh}\left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )+12 b c x \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},\frac {1}{4},\frac {5}{4},-\frac {b x^4}{a}\right )+4 b e x^3 \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},\frac {3}{4},\frac {7}{4},-\frac {b x^4}{a}\right )\right )}{12 b \sqrt {1+\frac {b x^4}{a}}} \]

[In]

Integrate[(c + d*x + e*x^2 + f*x^3)*Sqrt[a + b*x^4],x]

[Out]

(Sqrt[a + b*x^4]*(2*a*f*Sqrt[1 + (b*x^4)/a] + 3*b*d*x^2*Sqrt[1 + (b*x^4)/a] + 2*b*f*x^4*Sqrt[1 + (b*x^4)/a] +
3*Sqrt[a]*Sqrt[b]*d*ArcSinh[(Sqrt[b]*x^2)/Sqrt[a]] + 12*b*c*x*Hypergeometric2F1[-1/2, 1/4, 5/4, -((b*x^4)/a)]
+ 4*b*e*x^3*Hypergeometric2F1[-1/2, 3/4, 7/4, -((b*x^4)/a)]))/(12*b*Sqrt[1 + (b*x^4)/a])

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 1.89 (sec) , antiderivative size = 243, normalized size of antiderivative = 0.73

method result size
risch \(\frac {\left (10 b f \,x^{4}+12 b e \,x^{3}+15 b d \,x^{2}+20 b c x +10 a f \right ) \sqrt {b \,x^{4}+a}}{60 b}+\frac {a \left (\frac {20 c \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {12 i e \sqrt {a}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-E\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}\, \sqrt {b}}+\frac {15 d \ln \left (x^{2} \sqrt {b}+\sqrt {b \,x^{4}+a}\right )}{2 \sqrt {b}}\right )}{30}\) \(243\)
default \(c \left (\frac {x \sqrt {b \,x^{4}+a}}{3}+\frac {2 a \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{3 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\right )+\frac {f \left (b \,x^{4}+a \right )^{\frac {3}{2}}}{6 b}+e \left (\frac {x^{3} \sqrt {b \,x^{4}+a}}{5}+\frac {2 i a^{\frac {3}{2}} \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-E\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{5 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}\, \sqrt {b}}\right )+d \left (\frac {x^{2} \sqrt {b \,x^{4}+a}}{4}+\frac {a \ln \left (x^{2} \sqrt {b}+\sqrt {b \,x^{4}+a}\right )}{4 \sqrt {b}}\right )\) \(257\)
elliptic \(\frac {f \,x^{4} \sqrt {b \,x^{4}+a}}{6}+\frac {e \,x^{3} \sqrt {b \,x^{4}+a}}{5}+\frac {d \,x^{2} \sqrt {b \,x^{4}+a}}{4}+\frac {c x \sqrt {b \,x^{4}+a}}{3}+\frac {a f \sqrt {b \,x^{4}+a}}{6 b}+\frac {2 a c \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{3 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {a d \ln \left (2 x^{2} \sqrt {b}+2 \sqrt {b \,x^{4}+a}\right )}{4 \sqrt {b}}+\frac {2 i a^{\frac {3}{2}} e \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-E\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{5 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}\, \sqrt {b}}\) \(273\)

[In]

int((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/60*(10*b*f*x^4+12*b*e*x^3+15*b*d*x^2+20*b*c*x+10*a*f)/b*(b*x^4+a)^(1/2)+1/30*a*(20*c/(I/a^(1/2)*b^(1/2))^(1/
2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1
/2))^(1/2),I)+12*I*e*a^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^
2)^(1/2)/(b*x^4+a)^(1/2)/b^(1/2)*(EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)-EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/
2),I))+15/2*d*ln(x^2*b^(1/2)+(b*x^4+a)^(1/2))/b^(1/2))

Fricas [A] (verification not implemented)

none

Time = 0.13 (sec) , antiderivative size = 163, normalized size of antiderivative = 0.49 \[ \int \left (c+d x+e x^2+f x^3\right ) \sqrt {a+b x^4} \, dx=\frac {48 \, a \sqrt {b} e x \left (-\frac {a}{b}\right )^{\frac {3}{4}} E(\arcsin \left (\frac {\left (-\frac {a}{b}\right )^{\frac {1}{4}}}{x}\right )\,|\,-1) + 15 \, a \sqrt {b} d x \log \left (-2 \, b x^{4} - 2 \, \sqrt {b x^{4} + a} \sqrt {b} x^{2} - a\right ) + 16 \, {\left (5 \, b c - 3 \, a e\right )} \sqrt {b} x \left (-\frac {a}{b}\right )^{\frac {3}{4}} F(\arcsin \left (\frac {\left (-\frac {a}{b}\right )^{\frac {1}{4}}}{x}\right )\,|\,-1) + 2 \, {\left (10 \, b f x^{5} + 12 \, b e x^{4} + 15 \, b d x^{3} + 20 \, b c x^{2} + 10 \, a f x + 24 \, a e\right )} \sqrt {b x^{4} + a}}{120 \, b x} \]

[In]

integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2),x, algorithm="fricas")

[Out]

1/120*(48*a*sqrt(b)*e*x*(-a/b)^(3/4)*elliptic_e(arcsin((-a/b)^(1/4)/x), -1) + 15*a*sqrt(b)*d*x*log(-2*b*x^4 -
2*sqrt(b*x^4 + a)*sqrt(b)*x^2 - a) + 16*(5*b*c - 3*a*e)*sqrt(b)*x*(-a/b)^(3/4)*elliptic_f(arcsin((-a/b)^(1/4)/
x), -1) + 2*(10*b*f*x^5 + 12*b*e*x^4 + 15*b*d*x^3 + 20*b*c*x^2 + 10*a*f*x + 24*a*e)*sqrt(b*x^4 + a))/(b*x)

Sympy [A] (verification not implemented)

Time = 2.10 (sec) , antiderivative size = 156, normalized size of antiderivative = 0.47 \[ \int \left (c+d x+e x^2+f x^3\right ) \sqrt {a+b x^4} \, dx=\frac {\sqrt {a} c x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {1}{4} \\ \frac {5}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 \Gamma \left (\frac {5}{4}\right )} + \frac {\sqrt {a} d x^{2} \sqrt {1 + \frac {b x^{4}}{a}}}{4} + \frac {\sqrt {a} e x^{3} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 \Gamma \left (\frac {7}{4}\right )} + \frac {a d \operatorname {asinh}{\left (\frac {\sqrt {b} x^{2}}{\sqrt {a}} \right )}}{4 \sqrt {b}} + f \left (\begin {cases} \frac {\sqrt {a} x^{4}}{4} & \text {for}\: b = 0 \\\frac {\left (a + b x^{4}\right )^{\frac {3}{2}}}{6 b} & \text {otherwise} \end {cases}\right ) \]

[In]

integrate((f*x**3+e*x**2+d*x+c)*(b*x**4+a)**(1/2),x)

[Out]

sqrt(a)*c*x*gamma(1/4)*hyper((-1/2, 1/4), (5/4,), b*x**4*exp_polar(I*pi)/a)/(4*gamma(5/4)) + sqrt(a)*d*x**2*sq
rt(1 + b*x**4/a)/4 + sqrt(a)*e*x**3*gamma(3/4)*hyper((-1/2, 3/4), (7/4,), b*x**4*exp_polar(I*pi)/a)/(4*gamma(7
/4)) + a*d*asinh(sqrt(b)*x**2/sqrt(a))/(4*sqrt(b)) + f*Piecewise((sqrt(a)*x**4/4, Eq(b, 0)), ((a + b*x**4)**(3
/2)/(6*b), True))

Maxima [F]

\[ \int \left (c+d x+e x^2+f x^3\right ) \sqrt {a+b x^4} \, dx=\int { \sqrt {b x^{4} + a} {\left (f x^{3} + e x^{2} + d x + c\right )} \,d x } \]

[In]

integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c), x)

Giac [F]

\[ \int \left (c+d x+e x^2+f x^3\right ) \sqrt {a+b x^4} \, dx=\int { \sqrt {b x^{4} + a} {\left (f x^{3} + e x^{2} + d x + c\right )} \,d x } \]

[In]

integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c), x)

Mupad [F(-1)]

Timed out. \[ \int \left (c+d x+e x^2+f x^3\right ) \sqrt {a+b x^4} \, dx=\int \sqrt {b\,x^4+a}\,\left (f\,x^3+e\,x^2+d\,x+c\right ) \,d x \]

[In]

int((a + b*x^4)^(1/2)*(c + d*x + e*x^2 + f*x^3),x)

[Out]

int((a + b*x^4)^(1/2)*(c + d*x + e*x^2 + f*x^3), x)